31 research outputs found

    Load/displacement and energy absorption performances and improvements of structural members under tensile and compressive loading conditions.

    Get PDF
    The research programs detailed in this thesis focus on the load/displacement and energy absorption performances and improvements of structural members under tensile and compressive loading conditions. A theoretical model for the prediction of energy absorption capabilities of aluminum foam filled braided stainless steel tubes under tensile loading conditions has been developed based upon the unit cell concept. Comparisons between the energy absorption predictions of the analytical model and experimental observations were found to be in good agreement for assembly lengths of approximately 400 mm. Experimental investigations were also completed for energy absorbers which function under axial compressive loading conditions. The crush characteristics and energy absorption capacity of AA6061-T6 extrusions with centrally located through-hole discontinuities were investigated and analyzed. Three different types of geometrical discontinuities, namely, circular, slotted and elliptical holes were fabricated into AA6061-T6 extrusions which had a length of 200 mm, nominal side width of 38.1 mm and wall thickness of 3.15 mm. (Abstract shortened by UMI.)Dept. of Mechanical, Automotive, and Materials Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .C447. Source: Masters Abstracts International, Volume: 44-03, page: 1485. Thesis (M.A.Sc.)--University of Windsor (Canada), 2005

    Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Get PDF
    In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT). The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions

    Tirofiban for Stroke without Large or Medium-Sized Vessel Occlusion

    Get PDF
    The effects of the glycoprotein IIb/IIIa receptor inhibitor tirofiban in patients with acute ischemic stroke but who have no evidence of complete occlusion of large or medium-sized vessels have not been extensively studied. In a multicenter trial in China, we enrolled patients with ischemic stroke without occlusion of large or medium-sized vessels and with a National Institutes of Health Stroke Scale score of 5 or more and at least one moderately to severely weak limb. Eligible patients had any of four clinical presentations: ineligible for thrombolysis or thrombectomy and within 24 hours after the patient was last known to be well; progression of stroke symptoms 24 to 96 hours after onset; early neurologic deterioration after thrombolysis; or thrombolysis with no improvement at 4 to 24 hours. Patients were assigned to receive intravenous tirofiban (plus oral placebo) or oral aspirin (100 mg per day, plus intravenous placebo) for 2 days; all patients then received oral aspirin until day 90. The primary efficacy end point was an excellent outcome, defined as a score of 0 or 1 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]) at 90 days. Secondary end points included functional independence at 90 days and a quality-of-life score. The primary safety end points were death and symptomatic intracranial hemorrhage. A total of 606 patients were assigned to the tirofiban group and 571 to the aspirin group. Most patients had small infarctions that were presumed to be atherosclerotic. The percentage of patients with a score of 0 or 1 on the modified Rankin scale at 90 days was 29.1% with tirofiban and 22.2% with aspirin (adjusted risk ratio, 1.26; 95% confidence interval, 1.04 to 1.53, P = 0.02). Results for secondary end points were generally not consistent with the results of the primary analysis. Mortality was similar in the two groups. The incidence of symptomatic intracranial hemorrhage was 1.0% in the tirofiban group and 0% in the aspirin group. In this trial involving heterogeneous groups of patients with stroke of recent onset or progression of stroke symptoms and nonoccluded large and medium-sized cerebral vessels, intravenous tirofiban was associated with a greater likelihood of an excellent outcome than low-dose aspirin. Incidences of intracranial hemorrhages were low but slightly higher with tirofiban

    Recrystallization and diffusion mechanisms of segregation improvement in cast billets by high temperature reduction pretreatment

    No full text
    Controlling the segregation of alloying elements in steel can improve the uniformity of the structure and properties of the material. High Temperature Reduction Pretreatment (HTRP) is an effective technique to improve the internal quality of steel by generating plastic deformation in the core and providing the recrystallization energy. Comparative analysis was conducted to illustrate the effect of the HTRP on the internal quality of 42CrMo cast billets. To quantitatively analyze the recrystallization and diffusion mechanisms, the tested samples were measured using Scanning Electron Microscopy (SEM), Original Position Statistic Distribution Analysis (OPA) and Electron Probe Microanalysis (EPMA). The results show that the plastic deformation prompts the austenite to recrystallize. As the deformation of the HTRP sample increases, the recrystallized austenite grain size decreases significantly. It is also found that the statistical macro-segregation and micro-segregation ratios of substitutional elements Si, Mn, Cr and Mo decrease. The increase in austenite grain boundaries enables the increase in diffusion coefficient of the solid solution elements, which is the main reason for improving the segregation of the cast billet

    Human Action Recognition Using Improved Salient Dense Trajectories

    No full text
    Human action recognition in videos is a topic of active research in computer vision. Dense trajectory (DT) features were shown to be efficient for representing videos in state-of-the-art approaches. In this paper, we present a more effective approach of video representation using improved salient dense trajectories: first, detecting the motion salient region and extracting the dense trajectories by tracking interest points in each spatial scale separately and then refining the dense trajectories via the analysis of the motion saliency. Then, we compute several descriptors (i.e., trajectory displacement, HOG, HOF, and MBH) in the spatiotemporal volume aligned with the trajectories. Finally, in order to represent the videos better, we optimize the framework of bag-of-words according to the motion salient intensity distribution and the idea of sparse coefficient reconstruction. Our architecture is trained and evaluated on the four standard video actions datasets of KTH, UCF sports, HMDB51, and UCF50, and the experimental results show that our approach performs competitively comparing with the state-of-the-art results

    Effects of β grain-growth behaviors on lamellar structural evolution and mechanical properties of TC4–DT alloy

    No full text
    Grain-growth behaviors of TC4–DT alloy in a narrow temperature range (990 °C−1050 °C) were systematically investigated, and the effects of which on the lamellar structural evolution and mechanical properties were quantitatively evaluated. Microstructural observations indicated that prior β grain size increased with an increase in heat-treatment temperature and time, which was described by the modified Sellars model. The grain-growth exponent ( n  = 2.741) and activation energy ( Q  = 161.0 kJ mol ^−1 ) during β treatment were confirmed. The α colony size similar to β grain varied significantly with the heat-treatment conditions, while α plate thickness changed slightly. The Hall–Petch equation could qualitatively exhibit the relationships between the lamellar microstructure parameters (prior β grain size, α colony size, and α plate thickness) and mechanical properties (strength, ductility, and impact toughness). The fine prior β grain that contained different orientated α colonies produced more boundaries to hinder dislocation motion and crack propagation, which contributed a more circuitous crack growth path. The results indicated that the control of α colony size was critical to improve the mechanical performance of TC4–DT alloy

    Dynamic recrystallization analysis of reduction pretreatment process by multi-phase field method

    No full text
    The reduction pretreatment (RP) process is an effective method to improve billet quality, and the deformation recrystallization plays an important role in the process. Exploring the RP process parameters, a dynamic recrystallization model of GCr15 steel was established by the phase-field method and physical simulation. The recrystallization kinetics and flow stress curves during hot compression were simulated by using this mode. The effects of deformation parameters and initial grain size on the dynamic recrystallization were investigated. Moreover, by using the results obtained by Finite element method (FEM), dynamic recrystallization during the RP process was investigated though this model. It was found that increasing the deformation temperature, deformation rate and decreasing the initial grain size can promote the dynamic recrystallization kinetics. Large Zener-Hollomon parameters can enhance recrystallized grain refinement, while the recrystallized grain size was not affected by the initial grain size. During the RP process, when the reduction is insufficient (10%), partial recrystallization occurs in the billet. With the increase of reduction from 10% to 16%, the area of complete recrystallization increases gradually. When the reduction is the same, the recrystallization in the billet center increases with the decrease of casting speed. When the reduction is 10%, partial recrystallization occurs in the billet center at a casting speed of 0.7 m min ^−1 , and fully recrystallization occurs in the billet center with a casting speed of 0.5 m min ^−1 . Thus, when the reduction is difficult to increase further, the recrystallization in the billet center can be improved by decreasing the casting speed

    Deformation Behavior and Constitutive Equation of 42CrMo Steel at High Temperature

    No full text
    High-temperature reduction pretreatment (HTRP) is a process that can significantly improve the core quality of a billet. The existing flow stress data cannot meet the needs of simulation due to lack of high temperature data. To obtain the hot forming process parameters for the high-temperature reduction pretreatment process of 42CrMo steel, a hot compression experiment of 42CrMo steel was conducted on Gleeble-3500 thermal-mechanical at 1200–1350 °C with the rates of deformation 0.001–10 s−1 and the deformation of 60%, and its deformation behavior at elevated temperature was studied. In this study, the effects of flow stress temperature and strain rate on austenite grain were investigated. Moreover, two typical constitutive models were employed to describe the flow stress, namely the Arrhenius constitutive model of strain compensation and back propagation artificial neural network (BP ANN) model. The performance evaluation shows that BP ANN model has high accuracy and stability to predict the curve. The thermal processing maps under strains of 0.1, 0.2, 0.3, and 0.4 were established. Based on the analysis of the thermal processing map, the optimal high reduction process parameter range of 42CrMo is obtained: the temperature range is 1250–1350 °C, and the strain rate range is 0.01–1 s−1

    Comparison of data-fitting models for schistosomiasis: a case study in Xingzi, China

    Get PDF
    When modelling prevalence data, epidemiological studies usually employ either Gaussian, binomial or Poisson models. However, reasons are seldom given in the literature why the chosen model was felt to be the most appropriate. In this study, we compared all three models for fitting schistosomiasis risk in Xingzi county, Jiangxi province, People’s Republic of China. Parasitological data from conventional surveys were available for 36,208 individuals aged between 6 and 65 years from 42 sampled villages and used in combination with environmental data to map the spatial patterns of schistosomiasis risk. The results show that the Poisson model fitted the data best and this model identified the role of environmental risk factors in explaining the geographical variation of schistosomiasis risk. These factors were further used to develop a predictive map, which has important implications for the control and eventual elimination of schistosomiasis in the People’s Republic of Chin

    Prevalence and Determinants of Cryptosporidium

    No full text
    corecore